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Temperature is a single statistical param-
eter that fully describes a disordered state
in thermal equilibrium. For athermal sys-
tems, like externally driven granular ma-
terials, where interaction energy scales
greatly exceeds the traditional thermo-
dynamic temperature, the large number
of grains often warrant for statistical de-
scriptions, and thus the notion of “effec-
tive temperatures” has been, often con-
troversially, introduced theoretically [1],
then extracted from simulations [2] and re-
cently observed in experiments [3]. Here
we extract a meaningful (and occasion-
ally negative) effective temperature from
athermal Artificial Spin Ice, demonstrate
its predictive power and relate it to the
external drive.

Artificial Spin Ice, a two-dimensional array of
elongated single-domain permalloy islands whose
shape anisotropy defines Ising-like spins ar-
ranged along the sides of a regular lattice, was
recently engineered to study frustration-induced
disorder [4]. Unlike other widely studied, natu-
rally occurring frustrated materials [7, 8, 9, 10,
6, 11], Artificial Spin Ice can be imaged via Mag-
netic Force Microscopy (MFM), thus providing a
powerful system which can be taylor-engineered
to explore different geometries theoretical mod-
els. Indeed, the thermodynamics of 2-D ice sys-
tems has been widely studied - and often exactly
solved - in the past four decades for a wide range
of vertex models [12, 13, 14]. And yet ASI canot
be considered in thermal equilibrium with the
surroundings: interaction energies between is-

Figure 1: Square and Hexagonal Artificial
Spin Ice. From top to bottom: AFM and MFM
of the two arrays; the 16 vertices of the square
artificial ice and the 8 vertices of the hexagonal,
their energy and multiplicity; the unique ground
state of square ice and the degenerate ground
state of hexagonal.[JIE, XIANGLIN, CAN YOU
MAKE THIS FIGURE?]

lands are of the order of 105 K and temperature
cannot induce spin-flipping fluctuations. Indeed
each island (80 × 220 × 25 nm, with a magnetic
moment ∼ 3×107µB) is a whole thermodynamic
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system, like a grain in granular materials. How-
ever, as for grains, for which a successful extrac-
tion of an effective temperature has been recently
reported [3], the large number of grains/islands
involved suggests the viability of statistical treat-
ments when fluctuations are activated via some
sort of external drive. Similarly, Artificial Spin
Ice is “externally driven” [4, 15, 16, 17]: in our
experimental procedure it is subject to a rotat-
ing (at 1000 rpm) magnetic field, stepwise de-
creasing from 2000 Oe, far above Hc (770 Oe
and independent of space) to zero with a con-
stant step size, Hs after holding each step for
5 s. Different protocols correspond to different
step-sizes (Hs = 1.6, 3.2 . . . 32 Oe): previously
reported data confirms our early heuristic intu-
ition that smaller Hs would correspond to lower
energies [16]. After demagnetization MFM im-
ages are taken, each containing a varying num-
ber of island (from one thousand to a few hun-
dreds, depending on the size of the array). We
report and interpret data of two different geome-
tries, square and hexagonal (Figure 1), of varying
sizes.

Following established approach [4, 17, 18] we
describe our data within a vertex model [14].
Square ice we has 4 topologies for the 16 pos-
sible vertices, called Type I . . . Type IV, of mul-
tiplicity qI = 2, qII = 4, qIII = 8, qIV = 2, de-
fined in Figure 1, corresponding to vertex en-
ergies EI, EII, EIII and fractional populations
nI, nII, nIII, nIV (which can be extracted via
MFM imaging), so that he specific vertex en-
ergy is E = EInI + EIInII + EIIInIII + EIVnIV.
In Hexagonal Ice the vertex topologies are just
two (Figure 1) of multiplicity qI = 6, qII = 2
and specific vertex energy E = EInI + EIInII.
The two geometries imply completely different
entropy vs. energy profiles for the vertex model:
while square array posses an unique ground state
of anti-ferromagnetic tiling of Type I vertices, in
the Hexagonal an extensively degenerate tiling
of Type I vertices returns significant residual en-
tropy. Both allow ample regions of negative tem-
perature as the higher energy configuration is
completely ordered. Perhaps non surprisingly,

they behave differently under AC demagnetiza-
tion: while for square case the lower energy is
never found, in the hexagonal case demagnetiza-
tion returns the ground state and its excitations.

We extract a meaningful effective temperature
from square Ice and use it to predict the widely
different outcomes at different magnetic step-
size and array sizes, by modeling the demagne-
tization protocol as a one-step non-equilibrium
stochastic process at the vertex level – thus
extending previous formalism [17]: the array
starts completely polarized and during demag-
netization the field carves types I, II, III or IV
defects inside the polarized background, which
is purely type-II. Without detailed knowledge
of the kinetics, we ask ourselves what is the
more likely outcome of such a process. In an
isotropic, vertex-gas approximation, where each
vertex is treated as an independent entity, there
are M = N !

(N−D)!
Q
αNα! ways to tear D defects

in the N vertices of a polarized tiling, allocated
among the four vertex types with distribution
Nα, α = I, . . . , IV. Calling ρ = D/N , να =
Nα/N , we maximize lnM under an energy con-
straint on the defected vertices ensemble, or ρσ−
ρ ln ρ−(1− ρ) ln (1− ρ)−ρβe

(∑IV
α=IEανα − E

)
– where σ = −

∑IV
α=I να ln να

qα
the entropy of the

defected ensamble – thus obtaining a canonical
distribution for the defects

να =
qα exp (−βeEα)

Z(βe)
, (1)

as well as the expression for the auxiliary ρ

ρ (βe) =
1

e−σ(βe) + 1
. (2)

Eqs 1,2 provide the actual vertex populations as

nI = ρνI, nIII = ρνIII, nIV = ρνIV

nII = (1− ρ) + ρνII.
(3)

The reciprocal effective temperature βe = 1/Te

can be extracted from an MFM scan via

βeEIII = ln
4 nI

nIII

. (4)
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Figure 2: Vertex Frequencies of Square Ar-
tificial Spin Ice vs. Effective Temperature:
experimental data from MFM images of arrays
of different lattice constant and obtained at dif-
ferent Hs plotted against their effective recipro-
cal temperature βe, along with theoretical lines.
Top: each data reppresent an MFM image. Bot-
tom: MFM image from the same array are av-
eraged, errorbars shows fluctuations inside the
same array. Note that older annealing proto-
col [4, 17] (open diamonds) returned substan-
tially lower βe.

We compute the vertex energies using a dumb-
bell model [19] for the magnetic dipole, con-
sidering only monopoles converging in each
vertex: energies then scales as (a − l)−1

and by imposing EI = 0, EIII = 1 one
finds EII =

(√
2− 1

)
/
(√

2− 1/2
)

and EIV =
4
√

2/
(
2
√

2− 1
)
.

As we only can interrogate the array via small
size MFM images, we can consider each of them

as a subsistem of the larger lattice, thus expect-
ing some large fluctuations. In the top panel
of Figure 2 we plot experimental data of each
MFM image for arrays of different sizes,vs. its
extracted effective reciprocal temperature, along
with the experimental prediction given by Equa-
tion 3. In the bottom panel we report average
values of MFM images corresponding to the same
array, along with their fluctuations (error bars
report standard deviations of the mean for both
temperature and population). Figure 2 shows
that the effective temperature has a very good
predictive power, effectively controlling the ver-
tex populations for arrays of different size in
different configurations, despite the crudity of
the gas of vertices approximation. Indeed even
data from older protocols fits very well – in-
cluding larger arrays (560, 680, 880 nm) that
could not be previously accounted for theoreti-
cally [17]. Larger sized arrays have larger fluctu-
ations, as the number of vertices in the imaged
subsystems (MFM scan) is much smaller. The
underestimation of Type III at higher tempera-
tures might be a signature of monopole attrac-
tion [19] among these vertices – which indeed ap-
pear in clusters - a feature that the current inde-
pendent vertex approximation cannot describe.
In an even more stringent test for our formal-
ism, Figure 3-a reports the linear dependence be-
tween ln 5nI/2nII and ln 8nI/2nIII, which should
correspond to the reciprocal effective tempera-
tures EIIβe,II deduced from populations of Type
II, and EIIIβe,III deduced from Type III (we leave
to the reader to check that at our effective tem-
peratures, a purely canonical distribution with
anomalous multiplicity of Type II equal to 5
instead than 4 provides a decent approxima-
tion). The linear fit returns an angular coeffi-
cient 0.441, very close to the expected theoretical
value EII/EIII =

(√
2− 1

)
/
(√

2− 1/2
)

= 0.453;
it also shows how further reduction of the step-
size will not lower temperature much more.

Is the effective temperature but a mathematical
artifice, a Lagrangia multiplier, albeit useful to
predict the thermodynamics of our system? Or
does it - like the actual temperature does - in-
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Figure 3: Effective Temperature of Square
Spin Ice. Top: Extracted data ln 5nI/2nII

plotted against ln 8nI/2nIII: linear fit returns a
ratio of the two very close to the theoretical
value. Bottom: Linear dependence of βe as a
function of the magnetic stepsize: βe was ob-
tained dividing data extracted valueln 4 nI

nIII
by

the estimated energy difference 2(
√

2−1)µo
4π

M2

L2
1
a '

1.4 10−7m
a 10−18 J.

form us about the “effective bath” in which our
system is merged, the external drive that flu-
idizes it? We can show that the effective tem-
perature can be controlled via the external drive
in a way strikingly analogous to that reported
for vibro-fluidized granular materials [3]. Fig-
ure 3-b. shows the linear dependence of < βe >
(averaged over the lattice constant a) in the mag-
netic step-size of the AC demagnetization. As we
shall see soon, this is not unique to the square
geometry. Incidentally, the reader should note
the inclusion of higher step-size data (Hs =32,
64 Oe) in Figure 3 which, despite corresponding
to non demagnetized arrays (residual magnetiza-
tion up to 60 %), agrees very well with the linear
fit in Hs. As the ratio nI/nIII = νI/νIII does not
depend upon ρ, we conclude that apparently de-
fects are created in the most likely way by the
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Figure 4: Effective Temperature of Hexag-
onal Spin Ice. Top: Exponential fits of nII/nI

vs. the energy EII; note the coefficient falling
very close to the expected mutiplicity q/3. Bot-
tom: Linear dependence of βe as a function of
the magnetic stepsize: βe was obtained dividing
data by linear fit of ln nI

3nII
vs. the energy EII.

Arrays os lattice constant a = 650 . . . 1620 were
used both in linear and exponential fit. Data for
arrays of lattice constant 425 nm are reported in
the top panel, although they were not used in the
fitting, as its frequency of excitations is smaller
than experimental error.

external drive even though the latter is not ca-
pable to reach the maximize their number and
thus ρ of Equation 2 does not equilibrate.

We test these concepts on a different geometrical
array, the Hexagonal Ice. AC demagnetization,
as mentioned before, very effectively returns the
ground state of Hexagonal Spin Ice for arrays of
small lattice constant (for a = 225, 260, 320, 425
nm the frequency of excitations is ∼ 10−3, be-
low experimental error), and diluted excitations
for larger lattice constant (a = 650 . . . 1620 nm),
thus making hexagonal ice a good candidate to
study the dependence of effective temperature on
array size and external magnetic field. As excita-
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tions nII completely defines the thermodynamics,
the introduction of an effective temperature

βeEII = ln
nI

3nII

(5)

might seem only a re-parametrization with little
predictive power. Nevertheless, when we extract
nII/nI from arrays of different size yet annealed
at the same magnetic step Hs, and plot it against
the respective energy EII (obtained via micro-
magnetics, as we now study much larger lattices,
we consider the full vertex interaction of dipole
islands, instead of just the dumbbell tips that
converge in the vertex) we find a remarkable ex-
ponential behaviour that suggests independence
of the effective temperature from the size of the
array. Figure 4-a shows these fits, from which we
can extract the effective temperature βe for each
different magnetic step-size Hs, while the coeffi-
cient of the exponential is non surprisingly close
to qII/qI = 1/3. Slightly better values of βe are
obtained via linear fit of Equation 5. Figure 4-b
shows the remarkable linear dependence of these
extracted betaeβe fromHs, as also happens in the
square case - although with different parameters:
different geometries experience different effective
temperature under the same magnetic drive.

Peter, could you add a conclusion? Peter, could
you add a conclusion? Peter, could you add
a conclusion? Peter, could you add a conclu-
sion? Peter, could you add a conclusion? Pe-
ter, could you add a conclusion? Peter, could
you add a conclusion? Peter, could you add a
conclusion? Peter, could you add a conclusion?
All work and no play makes Jack a dull boy All
work and no play makes Jack a dull boy All work
and no play makes Jack a dull boy All work and
no play makes Jack a dull boy All work and no
play makes Jack a dull boy All work and no play
makes Jack a dull boy ... now, where is the ax?
Oh, here it is....
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